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ABSTRACT 
 The construction of inverse states in a finite field �  enables the organization of 
the mass scale by associating particle states with residue class designations. With the 
assumption of perfect flatness (Ωtotal = 1.0), this approach leads to the derivation of a 
cosmic seesaw congruence which unifies the concepts of space and mass. The law of 
quadratic reciprocity profoundly constrains the subgroup structure of the 
multiplicative group of units �* defined by the field. Four specific outcomes of this 
organization are (1) a reduction in the computational complexity of the mass state 
distribution by a factor of ~1030, (2) the extension of the genetic divisor concept to 
the classification of subgroup orders, (3) the derivation of a simple numerical test for 
any prospective mass number based on the order of the integer, and (4) the 
identification of direct biological analogies to taxonomy and regulatory networks 
characteristic of cellular metabolism, tumor suppression, immunology, and 
evolution. It is generally concluded that the organizing principle legislated by the 
alliance of quadratic reciprocity with the cosmic seesaw creates a universal 
optimized structure that functions in the regulation of a broad range of complex 
phenomena.  
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I. Introduction 
Arithmetic conditions relating particle masses can be defined on the basis of (A) the 

supersymmetric conservation of congruence and (B) the observed characteristics of particle reactions 
and stabilities [1]. Stated in the form of common divisors of the particle mass parameters, these 
relations can be interpreted as expressions of genetic elements that represent particle characteristics 
[2]. In order to illustrate this concept, it has been shown that the pion triplet (π±, πo) can be associated 
with the existence of a greatest common divisor do± in a way that can account for both the highly 
similar physical properties of these particles and the observed π±/πo mass splitting. These results 
support the conclusion that a corresponding statement holds generally for all particle multiplets. 
Classification of the respective physical states is achieved by association of the common divisors 
(genes) with residue class designations [3] in a finite field � .  

The existence of the finite field � and the corresponding group �* leads immediately to the 
definition of a new physical entity, the inverse state [3]. With this theoretical apparatus, it can be 
demonstrated that the concept of supersymmetry can be directly expressed in terms of hierarchical 
relationships between odd and even order subgroups of �*, an outcome that automatically reflects 
itself in the phenomenon of fermion/boson pairing of individual particles. Accordingly, 
supersymmetric pairing originates as a group rather than a particle property. The status of the Higgs 
subgroup is singular; since it is found to have order 4, it is isolated from the hierarchical pattern and 
communicates globally to the mass scale with the seesaw congruence [3] through both (α) the 
specification of the generators of the physical masses and (β) the fusion of the concepts of mass and 
space. Overall, these results indicate the existence of a new universal organizing principle that 
simultaneously reveals itself through (1) the determination of the intrinsic physical properties of 
particle states and (2) the regulation of their respective interactions by specification of the unified 
strong-electroweak coupling constant α*. The existence of the multiplicative group of units �* of the 
field � enables the corresponding mass parameters and their constituent genes to possess a rich 
subgroup structure, the properties of which are the main subject of the present study. On the basis of 
the analysis given below, it is concluded that this organizational structure is optimized and that it plays 
a fundamental regulatory role in a wide range of complex phenomena.  

 
II. ����* Subgroup Structure and Quadratic Reciprocity 

 
A. Specification of Subgroup Orders 

The law of quadratic reciprocity [4], that was conjectured by Euler and independently discovered 
and proved by Gauss in 1796, founded the era of modern number theory and consequently stands as 
one of the most prominent theorems in the entirety of mathematics. Of corresponding primary 
importance to the organization of the physical mass scale [2] is the group structure of the particle 
states and its expression by the group �*. We now demonstrate the existence of a connection between 
these two fundamental entities. 

The relationship between quadratic reciprocity and the structure of �* is derived from the work of 
Zolotarev [5]. In his proof of quadratic reciprocity [5], Zolotarev made a direct link to permutations [6] 
of the elements of �* by using the following theorem which we now state in a form adapted from that 
given by Lemmermeyer [4]. 
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THEOREM (Zolotarev) 

For Pα an odd prime let the element a ∈  �* define the permutation σa of �* by mapping 
t(mod Pα) to ta(mod Pα). 
Let f denote the order of a in �* → af  ≡ 1(mod Pα).  

   Then, the permutation σa is the product of g cycles of length f where 

fg  =  Pα � 1.      (1) 
 

Hence,       
fg  ≡  � 1(mod Pα ).     (2) 
 
 

Two results are known from previous studies [3,7] on the structure of the mass scale. They are 
(A) the relation 
 

µνν BB e  =  (2q)(r/2) = 1-
PP αα

α ]g[]g[ β   ≡  � 1(mod Pα ),  (3) 

in which eBν  and µνB  are the prospective mass numbers for the electron neutrino νe and the muon 

neutrino νµ, integers respectively given by the residue class representatives (2q) = 
α

α P]g[ and  

(r/2) = 1

αP
]g[ −

β , and (B) 

α* =  2/r
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α
 = (34.26)−1 ,   (4) 

 

a statement which specifies the unified strong-electroweak coupling constant α* in terms of the 
electron and muon neutrino masses emν  and 

µνm . Accordingly, by combination of the theorem of 

Zolotarev given by Eq.(2) with the findings expressed by Eqs.(3) and (4), we immediately obtain the 
result 
 

     α* =  g
f  2/r

q2  
]g[

]g[
  m

m
1-

Pβ

P

ν

ν

α

α

µ

e ===
α

=  α*.   (5) 

 

Equation (5) states that α* sim
seesaw [3] relation   
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PHiggs

1-
PP ααα

α ]B[ ]g[]g[ ≡β ,    (6) 

 
integers which correspond to the mass parameters of the electron and muon neutrinos, and (b) special 
subgroups of the group �* . Hence, with (f, g) given alternatively by (2q, r/2) and (r/2, 2q), α* selects 
the two special subgroups with orders 

δ = {δ1, δ2} = {2q, r/2} = }]g[ ,]g{[ 1-
PP αα

α β .    (7) 

 
Of course, these two orders are primitive roots of the prime modulus Pα, a condition necessary for 
them to serve as generators [3].  

The relationship expressed by Eq.(5) elevates the significance of the magnitude of the unified 
strong-electroweak coupling constant α* to an exceptional status, since it simultaneously expresses 
fundamental mathematical and physical conclusions. Specifically, quadratic reciprocity enables α*, 
the cardinal nongravitational coupling constant, to identify special subgroups of �* and the orders of 
these subgroups are the identical generators (primitive roots) specified by the Higgs seesaw 
congruence given by Eq.(6). Further, since the orders of both subgroups are even, a previous study [2] 
has shown that these two groups automatically include the supersymmetric partners corresponding to 
each particle state in the group [2]. These findings immediately suggest the obvious conjecture that all 
physical particles are members of these two designated subgroups. In the following discussion, this 
hypothesis will be described as the δ-conjecture. We observe further that the δ-conjecture would be 
physically untenable for odd subgroup orders, since corresponding supersymmetric states would be 
fully excluded from representation [2]. 

The validity of this conjecture would be of enormous significance for the practical computation of 
the mass scale of particle states. Foremost, with Pα ≅  6×1060 and δ ≅ 1030, a huge factor of ~ 1030 in 
reduction of the complexity of the problem is immediately achieved. Of comparably high importance 
is the availability of a simple direct numerical test of any prospective mass number Bx through the 
evaluation of the order of the integer.  Specifically, 

 
     (Bx)δ ≡ 1 (mod Pα)     (8) 

 
must hold with 

 

     δ ∈  {2q, r/2} = {
α

α P]g[ , 1

αP
]g[ −

β }.   (9) 

 
 
We will accordingly assume the validity of the δ-conjecture in the following development. We know, 
however, that an exceptional set of particles must exist that cannot satisfy the test defined by Eqs. (8) 
and (9). Two cases are apparent. First, since the Higgs particle [3] has order 4 and 4 is not a divisor of 
either 2q or r/2, we have perforce 
 
      (BHiggs)δ � 1 (mod Pα)     (10) 
 
with δ given by Eq.(9). Second, since any generator (primitive root) must have maximal order  
(i.e. Pα − 1) by definition, the mass numbers of the two neutrinos appearing in Eq.(3) also surely fail 
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this test. It follows that the full complement of masses related by the cosmic (Higgs) seesaw 
congruence, the statement that fuses the concepts of mass and space [3], stands as a fundamental 
exception to the condition expressed by Eqs.(8) and (9). This interpretation identifies this small 
exclusive set of particles as the most elementary of all physical systems. Hence, the law of quadratic 
reciprocity confers dual physical and mathematical definitions on the concept of elementarity and 
certifies these systems as the organizers of the mass scale. 
 
B. Structure of Subgroup Orders 

The set of primitive root orders δ1 and δ2 specified by Eqs.(5) and (7) have explicit arithmetic 
structures [3,7] that are prospectively given by  

 

δ1 = 
α

α P]g[ = 2q = 2⋅32⋅7⋅13⋅31⋅37⋅47⋅53⋅59⋅71⋅73⋅83⋅107⋅109⋅113⋅137⋅139⋅149 (11) 

 
and 

 
     δ2 = 1

αP
]g[ −

β = r/2 = 2⋅52⋅11⋅17⋅19⋅23⋅29⋅41⋅43⋅61⋅67⋅79⋅89⋅97⋅101⋅103⋅127⋅131⋅151, (12) 

 
integers that obey the relations  

     
α

α P]g[ 1

αP
]g[ −

β  = Pα − 1      (13) 

 
with  
             

αP
]g[ β = Pα − gα ,     (14) 

 
 

as defined in earlier work [3] and represented in Eq.(3). We recall from a previous analysis [7] that the 
values for δ1 and δ2 given in Eqs.(11) and (12) are strongly constrained; they yield a value for the fine-
structure constant α = q/r that is in full accord with the very accurately known (∆α/α ~ 10−8) 
experimental figure [8]. Further, by inspection we see that  

 
gcd (δ1, δ2) = 2     (15) 

 
and that the general forms of  δ1 and δ2 can be written as 

 
δ1 = 2 ⋅ 32 ⋅ p1 ⋅ p2 �p16      (16) 

 
δ2 = 2 ⋅ 52 ⋅ q1 ⋅ q2� q17,     (17) 

 
in which the two sets of prime factors {pi} and {qj} are such that 

 
{pi} ∩  {qj}   =  φ ,     (18) 

 
since Eq.(15) holds. Accordingly, we then have  
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Pα − 1 = 22 ⋅ 32 ⋅ 52 16

1i=
∏ pi

17

1j=
∏ qj      (19) 

 
in conformance with earlier work [3,7]. We observe further that Eq.(15) expresses the minimum value 
possible, since acceptance of the δ-conjecture requires that δ1 and δ2 be even. 
 

1. Group Structure for P = 61 
A previous study [2] has shown how the group structure can be generally arranged in a hierarchical 

pattern of subgroup inclusion relationships and presented in the format of a digraph. In order to 
develop a specific picture of the subgroup organization associated with the large prime Pα , we now 
examine the pattern of the subgroup inclusions for the prime P = 61 ≡ 1(mod 4), a modulus which has  
the factor structure  P − 1 = 60 = 22 ⋅ 3 ⋅5 and the corresponding divisor set given by  
 

{d} = {1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60}.    (20) 
 

The divisors 2, 6, 10, and 30 in {d} are primitive roots [9] of P = 61. In accord with the description 
given for the prime P = 37 ≡ 1(mod 4) presented in the earlier work [2], the digraph for the ten 
subgroup orders {2, 3, 4, 5, 6, 10, 12, 15, 20, 30} shown in Fig. (1) is obtained. We see immediately 
that the four highly connected inner subgroups, with corresponding orders of 2, 6, 10, and 30, are all 
even orders and primitive roots. Further, these four primitive roots can be organized into the set      
{(2, 30), (6, 10)} of pairs (g1, g2) that each satisfy the congruence  
 
      g1g2 ≡ −1(mod P),      (21) 
 
the seesaw condition [3] given by Eq.(3) and a relation that arose in an earlier study [3] of primitive 
root inverse mappings for prime moduli of the form P ≡ 1(mod 4). Also apparent is the asymmetry 
present among these four groups; specifically, 6 is not a divisor of 10, hence, this cluster of four 
subgroups possesses a two-fold, not a four-fold axis of symmetry. Importantly, the isolation in the 
digraph of the subgroup of order 4, the subgroup corresponding to the supersymmetric Higgs pair [3], 
is manifest; it possesses a minimal connection to this central cluster of primitive root order subgroups 
(nodes). The pattern shown in Fig. (1) also suggests that all primitive roots that are divisors of P − 1, 
for moduli P ≡ 1(mod 4), are even integers. This hypothesis can be proved [10]. 

LEMMA  
Let prime P ≡ 1 (mod 4) and suppose that x is an odd divisor of P − 1. Then x is a 

quadratic residue mod P, hence, not a primitive root. It follows that any primitive root of P 
that is contained in the set of divisors of  P − 1, if it exists, must be even. 
PROOF:  (x/p) = (p/x) because p = 1(mod 4) and x is odd [9,11]. But (p/x) = (1/x) = 1 
because x divides P − 1.       Q.E.D. 

This result supports the δ-conjecture, reduces the search for primitve roots of the modulus that are 
divisors of P − 1, and identifies a special role for residue classes corresponding to fermions.   

 
 2.  Group Structure for P = 157 

The pattern illustrated in Fig. (1) would be substantively altered if 2 were not a primitive root of 
the modulus. The character of this change is readily visualized by consideration of a modulus  
P ≡ 1(mod 4) which has a group inclusion pattern isomorphic to that illustrated for P = 61 in Fig.(1)  
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generating  subgroups having orders g1 and g2. Specifically, with the exclusion of the trivial subgroup 
of order unity and itself, each subgroup respectively includes 

  
ni  = d(gi) − 2,  i = 1, 2     (24) 

 
subgroups of lesser order. In the simple example for P = 157 given in Fig.(2), n1 = 2 and n2 = 2. The 
quantity d(gi) in Eq.(24) denotes the customary arithmetical function [11,12] which gives the number 
of divisors of the integers gi. 
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3. Group Structure for Pαααα 
The results given above enable us now to represent key features of the subgroup organization for 

the large prime Pα. This modulus has two primitive root orders δ1 and δ2, given respectively by 
Eqs.(11) and (12), integers which are divisors of Pα − 1 that satisfy the seesaw congruence [3]. We also 
know that the integer 2 is not a primitive root of Pα; the minimum primitive root [3] is 14.  

A reduced schematic of the subgroup pattern for the modulus Pα  is illustrated in Fig.(3).  
Subgroups associated with divisors of Pα − 1 that are not divisors of δ1 or δ2 are deleted in this 
representation. This reduction, which corresponds physically to the acceptance of the δ-conjecture, 
greatly simplifies the subgroup structure. Quantitatively, since n1 + n2 ≅  1.2 × 106 and 
d(Pα − 1) ≅  2.3 × 1011, the number of physically relevant subgroups is diminished by a factor of ~ 105.   
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C. Biological Analogy 

The subgroup structure of the field group �* pictured in Fig.(3) inspires the construction of a 
biological analogy in which the abundant subgroups play the role of the evolved classes that stem from 
a central core genetic source. A reconfiguration of Fig. (3), which illustrates this analogy in the form 
of a group order taxonomy is shown in Fig.(4). The kingdom is represented by the ensemble composed 
of the subgroups of order 2, 4, and (Pα − 1)/2. Directly following, two principal and distinct phyla are 
defined by the large subgroups with orders δ1 and δ2. These phyla then serve as the sources of 
numerous classes represented by the lesser order subgroups. We emphasize that this system of 
organization assumes the validity of the δ-conjecture based on the law of quadratic reciprocity stated 
above in Section II.A.  

The comparison of the taxonomic pattern presented in Fig.(4) with the bacterial taxonomy 
descriptive of archaebacteria and eubacteria shown in Fig.(5) highlights the biological correspondence. 
From an ancestral procaryote (kingdom), two distantly related groups (archaebacteria and eubacteria) 
are evolved which subsequently experience further evolutionary branching into a range of specialized 
organisms [13]. 

Pα 
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 D.   Extension of Genetic Divisor Concept 

 A profound consequence of the subgroup ordering legislated by Zolotarev�s proof [5] of quadratic 
reciprocity with the use of the theorem on permutations is the doubling of the genetic function [2] of 
the divisors and their classification with the residue classes of � . On the basis of the pattern shown in 
Figs. (3) and (4), the genetic divisor interpretation can be applied to both (A) the designation of 
subgroup orders and (B) the specification of the masses and intrinsic attributes of individual particle 
systems [2]. In relation to the former, with the exception of the common divisor 2 given in Eq.(15), 
Fig. (3) shows the existence of two fully distinct gene pools that are respectively defined by the 
divisors of the primitive roots δ1 and δ2. These correspond to the two phyla shown in Fig. (4). Hence, 
selected genetic constituents of Pα − 1 also define the subgroup orders. 

 The singular isolated placement of the Higgs group of order 4 is clearly illustrated in Fig. (3). It 
communicates to the pair of principal subgroups δ1 and δ2 indirectly through the group with order 2, 
the magnitude of the greatest common divisor of δ1 and δ2 and the identifying divisor of fermions 
[1,14]. Since Eq.(6) gives the relation  

 
δ1δ2 ≡ )P (modB 2

Higgs α ,     (25) 

 
it follows that the seesaw congruence enables the Higgs system (subgroup) to specify (1) the masses of 
the particles (νe and νµ) that correspond to the generators of the mass scale [3], (2) the magnitude [3] 
of the unified strong-electroweak coupling constant α*, and (3) the organizational pattern of the 
subgroup structure of all particle states. These consequences are the direct result of the law of 
quadratic reciprocity in alliance with the unified concept of space and mass expressed explicitly by the 
cosmic seesaw relation [3].  
 

III. Conclusions 
The law of quadratic reciprocity powerfully constrains the subgroup structure of the mass scale of 

physical particle states. The overall reduction in mathematical complexity is estimated to be a factor of 
~ 1030. This large simplification in the subgroup pattern is further augmented by the existence of a 
direct numerical test of any prospective mass number that is based on the order of the integer. This 
system of particle state organization enables the genetic divisor concept to play a double role; it 
specifies both (1) the properties of individual particles and (2) the orders and subgroup relationships of 
the corresponding group structure of the particle systems. The resulting architecture encourages the 
construction of a biological analogy in which the pattern aptly follows the customary kingdom → 
phylum → class → order → family → et cetera paradigm. A key feature is the existence of two 
principal highly connected subgroups (nodes) that define corresponding genetically distinct gene pools 
of subgroup orders. This characteristic, the presence of a relatively small number of highly linked 
nodes (hubs), is a basic property of scale-free networks. Accordingly, a second similarity to biological 
systems emerges, since there are well founded indications that structures of this general form are 
important in metabolic networks [15], the action of tumor-suppressor genes [16], the mechanism of 
immunoglobulin gene rearrangement [17], and evolution [18]. The wide significance of the pattern 
illustrated in Figs. (3) and (4) leads to the conclusion that the constraint on the group relationships 
expressed jointly by quadratic reciprocity and the seesaw congruence creates a universal optimized 
structure that plays a fundamental regulatory role in a large array of complex phenomena.   
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